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What this report deals with:

I Piecewise linear (PL) four-dimensional manifold M.

I Hexagon relations—algebraic realizations of four-dimensional
Pachner moves, primarily, of the move 3–3.

I Topological quantum field theories (of sorts).
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What quantum means in four dimensions

I A quantum object is a beautifully deformed classical object.

I A realistic ( = feasible) deformation in four dimensions consists
in using cohomologies of algebraic structures, e.g., quandles,
instead of using them without cohomologies. This means
deforming a trivial cohomology class into a nontrivial one.

I Quandles are good for knots and knotted surfaces, while
hexagon relations are good for 4-manifolds. Undeformed
hexagon relations are “set-theoretic”.

I Linear set-theoretic relations may already contain in them one
more “deformation” of a different character, determined by an
arbitrary 2-cocycle.

I Gaussian exponentials of three types—fermionic, usual
bosonic, and discrete—may also be used as building blocks for
hexagon relations. These can be reduced, in a nontrivial way,
to linear set-theoretic relations, at least in many cases.
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n-Simplex relations and n-gon relations
Recall what they are

n-Simplex relations

These are Yang–Baxter, tetrahedron, 4-simplex, . . .
They come mainly from mathematical physics. Some cases of
Yang–Baxter and its simplified version, quandles, correspond also
very naturally to Reidemeister/Roseman moves in the theory of
knots/knotted surfaces.
They are thus algebraic realizations of these moves.

n-Gon relations
These are pentagon, hexagon, . . .

Pentagon corresponds to 3-dimensional Pachner moves, hexagon
to 4-dimensional, etc.
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Typical versions of n-simplex and n-gon relations

Set-theoretic relations
There is a set X of “colors”, and the relation states the equalness
of two subsets in a direct product X × · · ·×X of some copies of X .

Functional relations
Almost the same, but X may be infinite, like X = R or C; the two
subsets are typically algebraic in X × · · · × X , and the relation
states the equalness of their Zariski closures.

Quantum ( = tensor) relations

The relation states the equalness of two elements in a tensor
product V ⊗ · · · ⊗ V of some copies of an R- or C-linear space V ,
(for simplicity, we assume V ∗ = V ).
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Quantum relations from set-theoretic relations
Without cohomologies

Linear space V has, by definition, set X as its basis.
Then, to each element

(x1, . . . , xn) ∈ X×n = X × · · · × X︸ ︷︷ ︸
n

corresponds basis vector

x1 ⊗ · · · ⊗ xn ∈ V⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

.

The element in V⊗n corresponding to a subset S ⊂ X×n is∑
(x1,...,xn)∈S

x1 ⊗ · · · ⊗ xn.



Introducing cohomologies
Cohomology group is the factor cocycles/coboundaries

We now introduce scalar multipliers ϕ into the previous sum: the
element in V⊗n becomes now∑

(x1,...,xn)∈S

ϕ(x1, . . . , xn) x1 ⊗ · · · ⊗ xn. (∗)

Cocycles

Recall that two expressions of type (∗), corresponding to the l.h.s.
and r.h.s., must be equal. This can usually be interpreted as a
cocycle condition.

Coboundaries
And some ϕ satisfy the cocycle condition in a trivial—
uninteresting—way; such ϕ can be called coboundaries.
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Pachner move 3–3
The hexagon relations in this report will be algebraic realizations of this exactly move

Left-hand side (that is, initial state):

pentachora ( = 4-simplices) 12345, 12346 and 12356, grouped thus
around 2-face 123.

Right-hand side (final state):

pentachora 12456, 13456 and 23456, grouped around 2-face 456.

Both sides occupy the same place in a triangulation and have
the same boundary,

consisting of the following nine tetrahedra:

1245 1246 1256
1345 1346 1356
2345 2346 2356
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Set theoretic hexagon relation
3-faces are colored

For one pentachoron, let it be 12345, a subset

R12345 ⊂ X2345 × X1345 × X1245 × X1235 × X1234

in the Cartesian product of copies of set X is given. Similarly,
there are its copies Ru for five other pentachora u.

Subset SL corresponding to the l.h.s. of the relation:

(x1245, x1246, x1256, x1345, x1346, x1356, x2345, x2346, x2356) ∈ SL

provided there are such x1234, x1235 and x1236—corresponding to
inner tetrahedra—that (x2345, x1345, x1245, x1235, x1234) ∈ R12345

and similarly for two other pentachora 12346 and 12356.

Then SR in the similar way.

And the relation is of course

SL = SR .
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Linear set theoretic hexagon

Linear set of colors
Now let the set X of colors be a two-dimensional linear space over
a field F . For each pentachoron u, let

Ru ⊂
⊕

tetrahedra t⊂u
Xt

be a five-dimensional linear subspace in the ten-dimensional direct
sum of copies of X .

Constant and non-constant Ru

The simplest case is where Ru are, for all pentachora u, copies of
one fixed R (in some natural sense). But when they are not, this
brings about extremely interesting mathematical structures.

The hexagon relation SL = SR

Generically (if no degeneracies), SL and SR are nine-dimensional
linear subspaces of the same 18-dimensional space.
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A simple example of constant Ru = R

For each tetrahedron t, we introduce a basis in Xt , and denote
xt , yt the two coordinates of a vector xt ∈ Xt . Five-dimensional
subspace Ru ⊂

⊕
t⊂u Xt can be given, for u = 12345, by the

following five linear relations, and for any u similarly, changing
1, 2, 3, 4, 5 to the vertices of u taken in their increasing order:

y2345
y1345
y1245
y1235
y1234

 =


0 0 1 −1 0
0 1 0 −1 1
1 0 0 0 1
1 −1 0 1 0
0 −1 1 0 0




x2345
x1345
x1245
x1235
x1234

 .

We will also write this, taking some notational liberty (concerning
the letter R), as

y = Rx.



Pentachoron weight and edge operators
The weight is not yet quantum! Here, it is a delta function. One more “not very
quantum” weight is Gaussian, to be discussed a bit later.

Matrix R in the previous slide was obtained using the technique of
edge operators. These annihilate the pentachoron weight, which is,
in our case, the five-dimensional Dirac delta function or, in a
discrete case, Kronecker delta symbol:

W = δ(y − Rx).

Operators annihilating W are simply the five entries of column
y − Rx (because, generally, xδ(x) = 0, n’est-ce pas?).

And an edge operator corresponding to an edge b is their linear
combination involving only x ’s and y ’s on tetrahedra t ⊃ b.
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An example edge operator and an example linear
dependence between them

Edge operator for edge b = 12 (= 21) has the form

e12 = α
(1234)
12 x1234 + β

(1234)
12 y1234 + α

(1235)
12 x1235 + β

(1235)
12 y1235

+ α
(1245)
12 x1245 + β

(1245)
12 y1245 .

Linear dependence in vertex 1:

γ12e12 + γ13e13 + γ14e14 + γ15e15 = 0.

For a constant R, all coefficients γij can be taken equal to unity.

Remark: And for Gaussian pentachoron weights, edge
operators are differential!

Some discussion will be below.



An example edge operator and an example linear
dependence between them

Edge operator for edge b = 12 (= 21) has the form

e12 = α
(1234)
12 x1234 + β

(1234)
12 y1234 + α

(1235)
12 x1235 + β

(1235)
12 y1235

+ α
(1245)
12 x1245 + β

(1245)
12 y1245 .

Linear dependence in vertex 1:

γ12e12 + γ13e13 + γ14e14 + γ15e15 = 0.

For a constant R, all coefficients γij can be taken equal to unity.

Remark: And for Gaussian pentachoron weights, edge
operators are differential!

Some discussion will be below.



An example edge operator and an example linear
dependence between them

Edge operator for edge b = 12 (= 21) has the form

e12 = α
(1234)
12 x1234 + β

(1234)
12 y1234 + α

(1235)
12 x1235 + β

(1235)
12 y1235

+ α
(1245)
12 x1245 + β

(1245)
12 y1245 .

Linear dependence in vertex 1:

γ12e12 + γ13e13 + γ14e14 + γ15e15 = 0.

For a constant R, all coefficients γij can be taken equal to unity.

Remark: And for Gaussian pentachoron weights, edge
operators are differential!

Some discussion will be below.



An example edge operator and an example linear
dependence between them

Edge operator for edge b = 12 (= 21) has the form

e12 = α
(1234)
12 x1234 + β

(1234)
12 y1234 + α

(1235)
12 x1235 + β

(1235)
12 y1235

+ α
(1245)
12 x1245 + β

(1245)
12 y1245 .

Linear dependence in vertex 1:

γ12e12 + γ13e13 + γ14e14 + γ15e15 = 0.

For a constant R, all coefficients γij can be taken equal to unity.

Remark: And for Gaussian pentachoron weights, edge
operators are differential!

Some discussion will be below.



A few words about non-constant Ru
The weight is still not quantum!

In the case Ru 6= const, it has a nonlinear parameterization in
terms of a multiplicative 2-cocycle ω taking values in F ∗ (recall
that F is a field). That is, for instance,

ω123 ω134

ω124 ω234
= 1, ω123 = ω−1213 = . . . .

The values ωijk of ω are related to the coefficients γij in the
previous slide:

ω123 =
γ12
γ21

γ23
γ32

γ31
γ13

.
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Quantum hexagon: cohomologies for F = F2
And for the mentioned constant R, not involving any cocycle

Mappings of permitted colorings:

(colorings of ∆5)
f5−→ (pentachora colorings)

f4−→ (3-faces colorings)

Here (from right to left):

I colorings of 3-faces, i.e., tetrahedra t, are arbitrary pairs
(xt , yt) ∈ F2

2,

I a coloring of (all 3-faces of) a pentachoron must belong to R
reduced modulo 2. We call such colorings permitted,

I ∆5 is a 5-simplex, and its boundary ∂∆5 is the l.h.s. and r.h.s.
of move 3–3 together. A coloring of (all 3-faces of) ∆5 must
induce a permitted coloring on each of its six pentachora.

Now introduce Z2-valued cochains

These are arbitrary mappings from colorings to the group Z2. For
cochains, we call the arrows δ5 and δ4, and they point to the left.
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Quantum hexagon: cohomologies for F = F2
Calculation results, including a cubic polynomial that can be called the Lagrangian
of a TQFT

Our cohomologies are Ker δ5/ Im δ4.

And the result is that there are very many cohomologies!

Example of a nontrivial cocycle: an elegant cubic polynomial

x1345x1235x1234 + x1345x1245x1234

+ x2345x1245x1234 + x2345x1245x1235 + x2345x1345x1235

for pentachoron 12345, and the same with 1 7→ i , . . . , 5 7→ m for
other five pentachora ijklm, i < j < k < l < m.

We of course identify Z2 with the additive group of F2.
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Newest development: cubic Lagrangian for a
four-dimensional topological quantum field theory
And over a field of characteristic 2

Exotic “discrete Lagrangian density” is proposed for topological
quantum field theories on piecewise linear four-manifolds. It has
the form of a cubic polynomial over a finite field of characteristic
two.



Field
We choose a finite field F = F2n of characteristic two. For
instance, field F2 of two elements, or F4 of four elements, etc.

Manifold
We take a triangulated closed 4-manifold M.

Vertices and pentachora

All vertices of the triangulation of M are numbered from 1 through
their total number N0.
Below we will do some constructions for each pentachoron. We
will demonstrate them on the example of pentachoron 12345,
keeping in mind that the change

1 7→ i , . . . , 5 7→ m.

should be done for an arbitrary pentachoron ijklm, where the
vertices go in the increasing order: i < j < k < l < m.
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Variables
We put a variable xt on each 3-face t of the triangulation, taking
values in the mentioned field: xt ∈ F = F2n .

More variables
For each pentachoron u, we define quantities y

(u)
t ∈ F living on all

its 3-faces t. For pentachoron 12345, they are given be
y2345
y1345
y1245
y1235
y1234

 =


0 0 1 1 0
0 1 0 1 1
1 0 0 0 1
1 1 0 1 0
0 1 1 0 0




x2345
x1345
x1245
x1235
x1234

 .

Here, of course, y2345 = y
(12345)
2345 , etc.
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Restrictions on variables xt
All sets of variables xt comprise an F -linear space, namely, FN3 ,
where N3 is the total number of tetrahedra. We will, however,
allow our variables only to run over its subspace L ⊂ FN3

determined by the following restrictions.

According to the previous slide, two yt appear on each
tetrahedron t, because t is a common 3-face for two neighboring
pentachora, denote them u1 and u2. The subspace L is singled out
by the requirement that these two yt coincide for every t:

y
(u1)
t = y

(u2)
t .



Lagrangian density

For each tuple of variables xt , belonging to the subspace L, we
calculate the value of the following polynomial. First, we calculate
for each pentachoron u what can be called “discrete Lagrangian
density” Au. For pentachoron 12345, it is

A12345 = x1345x1235x1234 + x1345x1245x1234 + x2345x1245x1234

+ x2345x1245x1235 + x2345x1345x1235.

Action
Then these all are summed up, and we obtain our “action”:

A =
∑
u

Au.
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PL manifold invariants
First, just a ‘corrected’ number of colorings

‘Rough’ invariant, not requiring our cocycle/action:

Irough(M) = dim L− 1

2
N4 − 2N0.

Here N4 and N0 are the numbers of pentachora and vertices in the
triangulation. Note that

dim L = log|F |(total number of permitted colorings).

So, this invariant is a clear analogue of quandle invariants not
using cohomologies.

Some calculation results:

Irough
(
S4
)

= −6, Irough
(
S2 × S2

)
= −10, Irough

(
T 4
)

= 6.

Remark : this holds for any finite field of characteristic two.



PL manifold invariants
Now, our action comes into play

Action A also takes values in F = F2n . For any v ∈ F , the
‘probability of value v for the action’ is a manifold invariant:

Pv (M,F ) =
#v

(total number of permitted colorings)
.

Here #v—the multiplicity of v—is the number of times A takes
value v when variables xt run through subspace L.

Notations: Below we also denote Pv (M,F ) = P(v).

Remark : this can be also reformulated in terms of 2n state sum
invariants, each using its group homomorphism

F2n → C∗

as an ‘exponential function’, with values only 1 and −1, of course.



Calculation of invariants: first results
This turns out not very easy and requires computer resources or/and further theory
development. And the results below are preliminary!

Calculations are being made right these days by my young
colleague Nurlan Sadykov, using his specialized GAP package
PLGAP for calculations with PL manifolds.

For F = F4:

M P(0) P(1) P(any other value)

S4 1 0 0

S2 × S2 5/8 3/8 0

T 4 65/128 63/128 0

For F = F8:

M P(0) P(any other value)

S4 1 0

S2 × S2 11/32 3/32

T 4 71/512 63/512

https://www.researchgate.net/profile/Nurlan_Sadykov


Outline

Generalities

Quantum relations from set-theoretic relations and cohomologies

Pachner move 3–3 and set theoretic hexagon

Linear set theoretic hexagon

Quantum hexagon: cohomologies for F = F2

Newest development: cubic Lagrangian for a 4d TQFT

How 2-cocycles arise from Gaussian pentachoron weights

Recapitulation



How 2-cocycles arise from Gaussian pentachoron weights
For instance, for the “two-boson” case. Here is a 10 × 10 symmetric matrix whose pairs
of rows and columns correspond to tetrahedra—3-faces of pentachoron 12345.

Gaussian weight is of course exp(quadratic form).

f11 g11 f12 g12 f13 g13 f14 g14 f15 g15
g11 r11 h12 r12 h13 r13 h14 r14 h15 r15
f12 h12 f22 g22 f23 g23 f24 g24 f25 g25
g12 r12 g22 r22 h23 r23 h24 r24 h25 r25
f13 h13 f23 h23 f33 g33 f34 g34 f35 g35
g13 r13 g23 r23 g33 r33 h34 r34 h35 r35
f14 h14 f24 h24 f34 h34 f44 g44 f45 g45
g14 r14 g24 r24 g34 r34 g44 r44 h45 r45
f15 h15 f25 h25 f35 h35 f45 h45 f55 g55
g15 r15 g25 r25 g35 r35 g45 r45 g55 r55



Where is a 2-cocycle hidden?
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How 2-cocycles arise from Gaussian pentachoron weights
Here is the explanation. Recall that, for instance, W = exp(−x2/2) satisfies the equation( d

dx
+ x

)
W = 0, and there are similar annihilating differential operators for multi-

variable Gaussian exponentials as well.

Gaussian weight
↓

Linear space of operators annihilating the Gaussian weight
↓

Edge operators
↓

Linear dependencies between edge operators in each vertex
↓

2-cocycle from coefficients of these dependencies
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↓

2-cocycle from coefficients of these dependencies
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Now some recapitulation

I Linear set-theoretic hexagon relations already contain a
deformation due to a 2-cocycle. Here the key techical idea is
edge operators.

I Quantum hexagon relations contain further deformations due
to cohomologies.

I And these already suggested a cubic Lagrangian for a TQFT
in characteristic two.

I Gaussian exponentials reduce to linear relations (delta
functions), at least often.

And this is THE END, thank you.



Now some recapitulation

I Linear set-theoretic hexagon relations already contain a
deformation due to a 2-cocycle. Here the key techical idea is
edge operators.

I Quantum hexagon relations contain further deformations due
to cohomologies.

I And these already suggested a cubic Lagrangian for a TQFT
in characteristic two.

I Gaussian exponentials reduce to linear relations (delta
functions), at least often.

And this is THE END, thank you.



Now some recapitulation

I Linear set-theoretic hexagon relations already contain a
deformation due to a 2-cocycle. Here the key techical idea is
edge operators.

I Quantum hexagon relations contain further deformations due
to cohomologies.

I And these already suggested a cubic Lagrangian for a TQFT
in characteristic two.

I Gaussian exponentials reduce to linear relations (delta
functions), at least often.

And this is THE END, thank you.



Now some recapitulation

I Linear set-theoretic hexagon relations already contain a
deformation due to a 2-cocycle. Here the key techical idea is
edge operators.

I Quantum hexagon relations contain further deformations due
to cohomologies.

I And these already suggested a cubic Lagrangian for a TQFT
in characteristic two.

I Gaussian exponentials reduce to linear relations (delta
functions), at least often.

And this is THE END, thank you.



Now some recapitulation

I Linear set-theoretic hexagon relations already contain a
deformation due to a 2-cocycle. Here the key techical idea is
edge operators.

I Quantum hexagon relations contain further deformations due
to cohomologies.

I And these already suggested a cubic Lagrangian for a TQFT
in characteristic two.

I Gaussian exponentials reduce to linear relations (delta
functions), at least often.

And this is THE END, thank you.



Now some recapitulation

I Linear set-theoretic hexagon relations already contain a
deformation due to a 2-cocycle. Here the key techical idea is
edge operators.

I Quantum hexagon relations contain further deformations due
to cohomologies.

I And these already suggested a cubic Lagrangian for a TQFT
in characteristic two.

I Gaussian exponentials reduce to linear relations (delta
functions), at least often.

And this is THE END, thank you.


	Generalities
	Quantum relations from set-theoretic relations and cohomologies
	Pachner move 3–3 and set theoretic hexagon
	Linear set theoretic hexagon
	Quantum hexagon: cohomologies for F=F2
	Newest development: cubic Lagrangian for a 4d TQFT
	How 2-cocycles arise from Gaussian pentachoron weights
	Recapitulation

